INVESTIGAÇÃO DE MOLÉCULAS GRANDES POR IRRADIAÇÃO COM LASERS PULSADOS SINTONIZÁVEIS*.

J. A. Konningstein

Departament of Chemistry Carleton University, Ottawa - Canada

I. **INTRODUÇÃO**

O emprego de lasers revolucionou diversas áreas da química e da física e, em particular, propiciou um renascimento da espectroscopia Raman. Isto não passou despercebido à ciência no Brasil, como demonstraram recentemente os acontecimentos que cercaram o "Sergio Porto Memorial Symposium on Lasers and Aplications". Entretanto, o Brasil, mesmo antes do advento do laser, já estava bem representado, no campo da espectroscopia de espalhamento de luz, por Starmmreich e seus colaboradores.

Muitos trabalhos foram e ainda são desenvolvidos utilizando lasers contínuos, com freqüência fixa e com freqüência sintonizável, cobrindo uma faixa ampla do espectro eletromagnético, porém atualmente já se encontra disponível uma geração rova de lasers que produzem radiação durante períodos curtos (<ns) com uma potência notavelmente elevada (>1 MW) e cuja energia se mantém constante (dentro de ~10%) de um pulso para outro. Neste artigo, discutiremos alguns resultados obtidos com tais fontes de radiação. O nosso interesse se centraliza em torno da criação, durante o pulso de radiação, de moléculas em estado excitado suficientes para permitir sua investigação com a parte da radiação do pulso não utilizada no bombeamento óptico. Tal investigação se relaciona com a observação de

transições por absorção partindo do estado excitado ou transições de espalhamento de luz a partir do estado gerado e fornece, entre outras, informações sobre o espectro vibracional do estado excitado, a eficiência de cruzamentos intersistemas e tempos de vida.

II. TRANSIÇÕES DE ABSORÇÃO DO ESTADO EXCITA-DO EM COMPARAÇÃO COM AQUELAS DO ESTADO **FUNDAMENTAL**

A Fig. 1(a) ilustra transições, por absorção de radiação, que promovem o sistema desde o estado fundamental E até o estado E1 e - caso este esteja suficientemente povoado – desde E_1 até E_2 , todas com o mesmo valor de λ_{ϱ} . Vê-se na Fig. 1(b) que, se ocorrer saturação em E_1 , a energia, em λ_0 , é absorvida pelo sistema no estado E₁. Entretanto, como a seção de choque σ_{01} é maior do que σ_{12} , observa-se que a curva de absorção é deslocada e se torna linear após E_1 estar saturado. Uma análise simples¹ do processo mostra que a seguinte relação é importante:

$$N_{ph}(\lambda) = N_{V} \frac{\sigma_{01} + \sigma_{12}}{\sigma_{01}} - \frac{1}{\tau_{1}}$$
(1)

Fig. 1 - (a). Diagrama de níveis de energia e processos idealizados de absorção, com radiação de comprimento de onda λ_{ξ} ; (b), comportamento da absorção da amostra, irradiada com luz de comprimento de onda $\lambda \tilde{\chi}$, em função de Ig (que produz saturação efetiva de E₁).

QUIMICA NOVA / OUTUBRO 1980

174

Fig. 2 - Espectros de absorção e de fluorescência da clorofila a em piridina.

Em que $N_{np}(\lambda)$ é o n^o de fotons por segundo, N_v , o n^o de moléculas no caminho do feixe laser, σ é a secção de choque de absorção e τ_1 , o tempo de vida do estado excitado E_1 .

Fazendo $\sigma_{01} = \sigma_{12}$, demonstra-se facilmente que ocorre saturação efetiva de E_1 com lasers contínuos com potência de saída superior a 100 mW, se $\tau_1 > 1 \mu s$ e se houver 10^{10} moléculas no feixe. Isto é facilmente conseguido se uma solução 10^{-4} M for exposta ao feixe do laser contínuo, com

Fig. 3 - Diagrama de níveis de energia da clorofila a em piridina, construído com os dados da Fig. 2.

a radiação focalizada na cela de absorção. Não ocorre saturação efetiva de E_1 quando se usa radiação não focalizada.

O espectro de absorção da clorofila a, em piridina, é bem conhecido² e é mostrado na Fig. 2. O diagrama de níveis de energia correspondente é dado na Fig. 3. Os níveis se dividem entre os pertencentes aos estados tripletes e singletes. A transição T_o ← S_o é rigorosamente proibida, porém pode ser observada para a clorofila a, em uma mistura de éter, isopentano e etanol, a 77K. A Fig. 4 mostra o comportamento da transmitância em função da intensidade de uma fonte de laser contínuo e outra de laser pulsado, em $\lambda = 488,0$ nm. Observa-se que, para valores elevados de potência do laser, a transmitância de uma solução piridínica 1,45x10⁻⁴M atinge o mesmo valor constante (T = 23%). O fato deste número corresponder ao valor de T, em 488,0 nm, no espectro de absorção envolvendo estados tripletes ($T_n \leftarrow T_o$), é de importância capital para o presente estudo. Concluimos que ambos os lasers produzem saturação efetiva do estado triplet To. A radiação de 488,0 nm está em ressonância com uma banda lateral vibrônica da banda correspondente à transição

 $S_3 \leftarrow S_o$. O sistema atinge o estado S_1 , através de vários mecanismos de relaxação, e depois passa ao estado T_o por um processo de cruzamento intersistemas, enquanto perde também energia como resultado da fluorescência $S_n \rightarrow S_o$ (veja a Fig. 2). As perdas de energia são iguais para a radiação laser contínua e a pulsada e observa-se

que $\tau_{T_0} = \frac{N_{ph}(\text{laser contínuo})}{N_{ph}(\text{laser contínuo})}$, nas condições de satura-

ção, sendo N_{ph} (laser contínuo) = 1,15x10¹⁸ fotons/segundo e N_{ph} (laser pulsado) = 0,8x10¹⁴ fotons por pulso de

3,2 ns a uma frequência de repetição de pulsos igual a 25Hz. Obtém-se o valor $\tau_{T_o} = 70 \mu s$. A presente experiência mostra a conveniência de avaliar o tempo de vida do estado excitado triplete sem se medir diretamente a curva de decaimento da fosforescência. Observamos que, com o laser pulsado, outro estado fica populado antes de T_o e, como em ~ 680 nm, excita-se fluorescência S₁ \rightarrow S_o intensa, admitimos que o estado S₁ é povoado antes de T_o. A partir da curva de decaimento do pulso de fluorescência obtém-se o valor de $\tau_{S_1} = 45 \pm 5$ ns. Usando a equação (1) e os resultados experimentais de T como função de I_Q (laser pulsado) com $\lambda_Q = 441,0$ nm (próximo do máximo de absorção no azul) encontramos que $\tau_{S_4} = 110 \text{ ps.}$

Observa-se um aspecto interessante ao se estudar o decaimento da fluorescência a 680,0 nm, quando esta é excitada pelo laser pulsado de $\lambda g = 445,0$ nm. A curva de decaimento revela (veja a Fig. 5) a presença de dois processos, sendo que um deles é devido à transição $S_1 \rightarrow S_o$ (monômero),

Fig. 5 - Decaimento da fluorescência (em 680 nm) para o monômero e para o dímero da clorofila a, em piridina. A fluorescência é induzida com λg = 445,0 nm (pulsada) e o dímero é destruído quando esta radiação é focalizada na solução.

enquanto o outro não ocorre quando o laser pulsado é focalizado na solução. Atribuimos o processo "retardado" à fluorescência do dímero da clorofila a cuja existência é conhecida em soluções piridínicas. A focalização da radiação laser de 445,0 nm na solução causa a saturação do estado S_4 e a energia de ~ 5,6eV, transferida ao sistema de clorofila, é suficientemente alta para causar a dissociação do dímero. Com efeito, a fluorescência $S_1 \rightarrow S_o$ do dímero pode ser estudada diretamente usando-se um integrador do tipo "box car". Movendo-se os 6 ns de abertura (tempo

176 QUÍMICA NOVA / OUTUBRO 1980

de medida do integrador) de aproximadamente 300 ns a partir do disparo do próprio pulso, vemos, pela Fig. 5, que a parte do pulso devida à fluorescência $S_1 \rightarrow S_o$ do monômero é desprezível, em comparação com a fluorescência devida ao dímero, e o espectro registrado (mostrado na Fig. 6) é bem diferente do espectro do monômero.

Fig. 6 - Espectros de fluorescência do monômero e do dímero da clorofila a, em piridina e em acetona.

Medidas semelhantes foram também feitas para clorofila *a* em acetona e se nota que o desdobramento do exciton ("exciton splitting") para o dímero em acetona ($\Delta = 317$ cm⁻¹) é maior do que o observado em piridina ($\Delta = 105$ cm⁻¹).

A partir das contribuições devidas ao dímero e ao monômero para a área do pulso avaliamos que a concentração do dímero é cerca de 1/3 da do monômero. Devido ao tempo de vida longo, 140 ns, do estado S_1 (do dímero) podemos povoar facilmente este estado com o laser pulsado. A parte da radiação laser não usada para fins de população é absorvida pelo estado excitado e pode servir como uma sonda Raman (ressonante). O espectro Raman da clorofila a em piridina mostra um deslocamento de ~ 105 cm⁻¹ que é atribuída ao desdobramento Davydov do estado S_1 do dímero.

III. TRANSIÇÕES DE ESPALHAMENTO RAMAN DE ES-TADO EXCITADO EM COMPARAÇÃO COM AS DE ESTADO FUNDAMENTAL.

O primeiro espectro Raman de espécie em estado excitado, gerado por bombeamento óptico, foi observado no laboratório do autor³. A amostra usada na investigação foi rubi (Cr^{3+} : α Al₂O₃), e a transição Raman – que é de origem eletrônica – ocorre entre os níveis povoados \overline{E} e 2 \overline{A} , do estado ²E desdobrado, que estão cerca de 14.500 cm⁻¹ acima do estado fundamental ${}^{4}A_{2}$. O processo é ilustrado na Fig. 7 e a transição Raman, mostrada na Fig. 8. É fácil fazer a atribuição de tais transições porque, com uma diminuição de Ig, tanto a população dos estados opticamente povoados como a intensidade da sonda Raman variam e, conseqüentemente I_{Raman} (estado excitado) deixa de ser linerar em relação a Ig. Assim, os espectros Raman de estados excitados são quase não lineares. Tais espectros⁴ foram também registrados para o Cr³⁺ em ZnAl₂O₄ (espinélio), Y₂Al₂O₁₁ (granada) e esmeralda.

 $ZnAl_2O_4$ (espinélio), $Y_3Al_5O_{11}$ (granada) e esmeralda. O diagrama de níveis de energia do tris (2,2'-bipiridila) crômio (III) em solução é descrito, aproximadamente, em termos de Cr^{3+} em um ambiente de simetria D_{3d} e é mostrado na Fig. 9. Usando radiação pulsada de $\lambda = 458,0$ nm obtém-se saturação na população do estado 4T_2 , com tempo de vida de 10ps. Nem toda a energia do laser é usada

no processo de absorção e ocorre um efeito Raman ressonante vibracional intensificado para os modos normais que envolvem movimentos dos átomos dos anéis. Em virtude da radiação laser estar em ressonância com o 5º ou o 69 níveis vibracionais desses modos do estado 4T2, origina-se uma situação em que é possível ocorrer a população dos níveis vibracionais sucessivos de alguns desses modos. Pode-se prever que, devido a efeitos de anarmonicidade, a banda Raman de um modo em ⁴T₂ deve ser assimétrica e alargada na direção de freqüência mais baixas. Deve ser também ressaltado aqui que a intensidade intrínseca das transições vibracionais é maior no topo do poço se comparada com as transições entre níveis vibracionais com números quânticos vibracionais pequenos. Conseqüentemente o alargamento assimétrico pode ser observado mesmo que a saturação na população dos níveis vibracionais mais altos não seja completa. Os resultados experimentais parecem justificar estas predições — veja a Fig. 10. O alargamento das bandas Raman de diferentes modos normais não precisa ser igual e depende do tempo de relaxação vibracional. Com a exposição da mostra à radiação de 457,9 nm de um laser contínuo, estes estados vibracionais não ficam povoados. Ao invés, a energia é transferida

através de um processo de cruzamento intersistemas com o estado eletrônico ²E e o sistema decai para o estado fundamental. A amostra emite radiação a 727 nm (²E \rightarrow ⁴A₂) e mesmo assim ²E pode permanecer povoado pois $\tau \approx 60$ µs. Isto é conseguido novamente, focalizando-se a radiação em uma solução 10⁻⁴M do sal, em forma de perclorato, em água. A saturação na população é evidente quando se estuda a transmitância em função de I_Q (veja II).

QUÍMICA NOVA / OUTUBRO 1980 177

Fig. 10 - Espectros Raman no estado fundamental (⁴A₂), no estado ²E, com tempo de vida de 60 μ s, e no estado ⁴T₂, de tempo de vida de ~10 ps, do Cr(bipy)³⁺₃ (Veja também a Fig. 9).

É claro que a espectroscopia Raman de estados excitados está intimamente relacionada com a espectroscopia Raman ressonante pois em ambos os casos faz-se a energia do laser entrar em ressonância com a de uma banda de absorção óptica do sistema. A medida da transmitância da amostra assume aqui extrema importância. Se forem selecionadas condições tais que T não varia, então, são excitadas somente transições do estado fundamental. Qualquer desvio de T em relação ao valor normal (para radiações de intensidades baixas) indica que ocorre alguma população do estado ressonante e é possível excitar também transições a partir desse estado, podendo ser de origem vibracional ou eletrônica.

*Pesquisa Financiada pelo Natural Sciences and Engineering Research Council of Canada e apresentada em parte por ocasião da 3ª Reunião Anual da SBQ (6-12 julho de 1980) no Rio de Janeiro, R.J., Brasil.

¹D. Nicollin, M. Asano e J. A. Konningstein, J. Chem. Phys. (a ser publicado).

Veja por exemplo: J. Baugher, J. C. Hindman e J. J. Katz, Chem. Phys. Letters, 63, 159 (1979).

³L. V. Haley, B. Halperin e J. A. Konningstein, Chem. Phys. Letters, 54, 389 (1978).

⁴B. Halperin, D. Nicollin e J. A. Konningstein, Chem. Phys., 42, 277 (1979).

ASSUNTO GERAL

RELATÓRIO DE ATIVIDADES 3ª Reunião Anual da SBQ – Rio de Janeiro, 6–12/julho/1980

1. Introdução

A Sociedade Brasileira de Química (SBQ) realizou sua 3ª Reunião Anual em conjunto com a XXXIIª Reunião Anual da SBPC, nas dependências da Universidade Estadual do Rio de Janeiro (UERJ) entre 6 e 12 de julho de 1980 (anexo Iª: Programa Geral da 3ª Reunião Anual da SBQ).

Nesta Reunião foram inscritas 418 comunicações de trabalhos originais, promovidos quatro debates e quatro cursos, proferidas seis conferências, realizada a Assembléia Geral Ordinária da SBQ e concedido o Prêmio SBQ-IBECC aos trabalhos de maior destaque na área de Química do concurso Cientistas do Amanhã. A 3ª Reunião Anual da SBQ foi patrocinada com recursos do CNPq, FAPESP e fundos próprios (anuidades) da SBQ.

A Comissão Executiva da 3ª Reunião Anual, responsável pela programação científica, financiamento e execução, foi constituída pelos Professores Etelvino J. H. Bechara (IQ, USP), Fernando Galembeck (IQ, UNICAMP), Eduardo M. A. Peixoto (BNDE, RJ) e Wanda de Oliveira (IQ, USP). Como nos anos anteriroes, a seleção dos temas para debates, conferências e cursos levou em conta, especialmente, as sugestões enviadas à SBQ por nossos associados da região, no caso, o IQ da UFRJ, PUC/RJ e UFRRJ.

2. Atividades Principais

2.1. Apresentação de Comunicações Originais:

Foram inscritos 418 trabalhos originais junto à SBQ para apresentação nas sessões orais e de "posters". A arbitragem dos trabalhos e a organização das sessões foram de responsabilidade da Secretaria Regional da SBQ na UNI-CAMP. Cerca de 89% dos trabalhos inscritos foram efetivamente apresentados durante a Reunião. Apenas os resumos destes trabalhos serão reproduzidos dos Resumos da Reunião Anual da SBPC para distribuição aos nossos sócios, Instituições de Ensino e Pesquisa, Bibliotecas e algumas Indústrias.

178 QUÍMICA NOVA / OUTUBRO 1980